Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Clin Cancer Res ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456660

RESUMO

PURPOSE: MEK inhibitors (MEKi) lack monotherapy efficacy in most RAS-mutant cancers. BCL-xL is an anti-apoptotic protein identified by a synthetic lethal shRNA screen as a key suppressor of apoptotic response to MEKi. PATIENTS AND METHODS: We conducted a dose escalation study (NCT02079740) of the BCL-xL inhibitor navitoclax and MEKi trametinib in patients with RAS-mutant tumors with expansion cohorts for: pancreatic, gynecologic (GYN), non-small cell lung cancer (NSCLC), and other cancers harboring KRAS/NRAS mutations. Paired pre-treatment and day 15 tumor biopsies and serial cell-free (cf)DNA were analyzed. RESULTS: 91 patients initiated treatment, 38 in dose escalation. 58% had ³3 prior therapies. 15 patients (17%) had colorectal cancer (CRC), 19 (11%) pancreatic, 15 (167%) NSCLC, and 32 (35%) GYN cancers. The recommended phase 2 dose (RP2D) was established as trametinib 2mg daily days 1-14 and navitoclax 250mg daily days 1-28 of each cycle. Most common adverse events included diarrhea, thrombocytopenia, increased AST/ALT, and acneiform rash. At RP2D, 8/49 (16.3%) evaluable patients achieved partial response (PR). Disease-specific differences in efficacy were noted. In GYN patients at the RP2D, 7/21 (33.3%) achieved a PR and median duration of response 8.2 months. No PRs occurred in CRC, NSCLC, or pancreatic patients. MAPK pathway inhibition was observed in on-treatment tumor biopsies. Reductions in KRAS/NRAS mutation levels in cfDNA correlated with clinical benefit. CONCLUSIONS: Navitoclax in combination with trametinib was tolerable. Durable clinical responses were observed in patients with RAS-mutant GYN cancers, warranting further evaluation in this population.

2.
Cancer Discov ; 8(4): 417-427, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29431697

RESUMO

Clonal heterogeneity associated with acquired resistance presents a critical therapeutic challenge. Whole-exome sequencing of paired tumor biopsies and targeted sequencing of cell-free DNA (cfDNA) from patients with BRAFV600E colorectal cancer receiving BRAF inhibitor combinations identified 14 distinct alterations in MAPK pathway components driving acquired resistance, with as many as eight alterations in a single patient. We developed a pooled clone system to study clonal outgrowth during acquired resistance, in vitro and in vivoIn vitro, the dynamics of individual resistant clones could be monitored in real time in cfDNA isolated from culture media during therapy. Outgrowth of multiple resistant clones was observed during therapy with BRAF, EGFR, and MEK inhibitor combinations. However, ERK inhibition, particularly in combination with BRAF and EGFR inhibition, markedly abrogated clonal outgrowth in vitro and in vivo Thus, convergent, up-front therapy may suppress outgrowth of heterogeneous clones harboring clinically observed resistance alterations, which may improve clinical outcome.Significance: We observed heterogeneous, recurrent alterations in the MAPK pathway as key drivers of acquired resistance in BRAFV600E colorectal cancer, with multiple concurrent resistance alterations detectable in individual patients. Using a novel pooled clone system, we identify convergent up-front therapeutic strategies capable of intercepting multiple resistance mechanisms as potential approaches to suppress emergence of acquired resistance. Cancer Discov; 8(4); 417-27. ©2018 AACR.See related commentary by Janku, p. 389See related article by Corcoran et al., p. 428This article is highlighted in the In This Issue feature, p. 371.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Sistema de Sinalização das MAP Quinases , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Discov ; 8(2): 164-173, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29196463

RESUMO

"Liquid biopsy" approaches analyzing cell-free DNA (cfDNA) from the blood of patients with cancer are increasingly utilized in clinical practice. However, it is not yet known whether cfDNA sequencing from large cohorts of patients with cancer can detect genomic alterations at frequencies similar to those observed by direct tumor sequencing, and whether this approach can generate novel insights. Here, we report next-generation sequencing data from cfDNA of 1,397 patients with colorectal cancer. Overall, frequencies of genomic alterations detected in cfDNA were comparable to those observed in three independent tissue-based colorectal cancer sequencing compendia. Our analysis also identified a novel cluster of extracellular domain (ECD) mutations in EGFR, mediating resistance by blocking binding of anti-EGFR antibodies. Patients with EGFR ECD mutations displayed striking tumor heterogeneity, with 91% harboring multiple distinct resistance alterations (range, 1-13; median, 4). These results suggest that cfDNA profiling can effectively define the genomic landscape of cancer and yield important biological insights.Significance: This study provides one of the first examples of how large-scale genomic profiling of cfDNA from patients with colorectal cancer can detect genomic alterations at frequencies comparable to those observed by direct tumor sequencing. Sequencing of cfDNA also generated insights into tumor heterogeneity and therapeutic resistance and identified novel EGFR ectodomain mutations. Cancer Discov; 8(2); 164-73. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 127.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Neoplasias Colorretais/genética , DNA de Neoplasias , Estudo de Associação Genômica Ampla , Genômica , Evolução Clonal/genética , Estudos de Coortes , Neoplasias Colorretais/sangue , Receptores ErbB/genética , Genômica/métodos , Humanos , Mutação
4.
Genome Med ; 9(1): 37, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28431544

RESUMO

Targeted therapies such as kinase inhibitors and monoclonal antibodies have dramatically altered cancer care in recent decades. Although these targeted therapies have improved patient outcomes in several cancer types, resistance ultimately develops to these agents. One potential strategy proposed to overcome acquired resistance involves taking repeat tumor biopsies at the time of disease progression, to identify the specific molecular mechanism driving resistance in an individual patient and to select a new agent or combination of agents capable of surmounting that specific resistance mechanism. However, recent studies sampling multiple metastatic lesions upon acquired resistance, or employing "liquid biopsy" analyses of circulating tumor DNA, have revealed that multiple, heterogeneous resistance mechanisms can emerge in distinct tumor subclones in the same patient. This heterogeneity represents a major clinical challenge for devising therapeutic strategies to overcome resistance. In many cancers, multiple drug resistance mechanisms often converge to reactivate the original pathway targeted by the drug. This convergent evolution creates an opportunity to target a common signaling node to overcome resistance. Furthermore, integration of liquid biopsy approaches into clinical practice may allow real-time monitoring of emerging resistance alterations, allowing intervention prior to standard detection of radiographic progression. In this review, we discuss recent advances in understanding tumor heterogeneity and resistance to targeted therapies, focusing on combination kinase inhibitors, and we discuss approaches to address these issues in the clinic.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Inibidores de Proteínas Quinases/farmacologia
5.
Cancer Discov ; 7(3): 252-263, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28034880

RESUMO

Genetic alterations in the fibroblast growth factor receptor (FGFR) pathway are promising therapeutic targets in many cancers, including intrahepatic cholangiocarcinoma (ICC). The FGFR inhibitor BGJ398 displayed encouraging efficacy in patients with FGFR2 fusion-positive ICC in a phase II trial, but the durability of response was limited in some patients. Here, we report the molecular basis for acquired resistance to BGJ398 in three patients via integrative genomic characterization of cell-free circulating tumor DNA (cfDNA), primary tumors, and metastases. Serial analysis of cfDNA demonstrated multiple recurrent point mutations in the FGFR2 kinase domain at progression. Accordingly, biopsy of post-progression lesions and rapid autopsy revealed marked inter- and intralesional heterogeneity, with different FGFR2 mutations in individual resistant clones. Molecular modeling and in vitro studies indicated that each mutation led to BGJ398 resistance and was surmountable by structurally distinct FGFR inhibitors. Thus, polyclonal secondary FGFR2 mutations represent an important clinical resistance mechanism that may guide the development of future therapeutic strategies.Significance: We report the first genetic mechanisms of clinical acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive ICC. Our findings can inform future strategies for detecting resistance mechanisms and inducing more durable remissions in ICC and in the wide variety of cancers where the FGFR pathway is being explored as a therapeutic target. Cancer Discov; 7(3); 252-63. ©2016 AACR.See related commentary by Smyth et al., p. 248This article is highlighted in the In This Issue feature, p. 235.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Compostos de Fenilureia/uso terapêutico , Pirimidinas/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adulto , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Proteínas de Ciclo Celular , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , DNA Tumoral Circulante/genética , Feminino , Fusão Gênica , Humanos , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Mutação , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição TFIIIA/genética
6.
Mol Cell Oncol ; 3(1): e1048405, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27308562

RESUMO

RAF inhibitor monotherapy is ineffective in BRAF-mutant colorectal cancer (CRC) but RAF inhibitor combinations have demonstrated improved efficacy, likely through superior suppression of MAPK signaling. The first identified mechanisms of acquired resistance to these combinations all promote MAPK reactivation, underscoring the MAPK pathway as a critical target in BRAF-mutant CRC.

7.
Cancer Discov ; 6(2): 147-153, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26644315

RESUMO

UNLABELLED: How genomic heterogeneity associated with acquired resistance to targeted agents affects response to subsequent therapy is unknown. We studied EGFR blockade in colorectal cancer to assess whether tissue and liquid biopsies can be integrated with radiologic imaging to monitor the impact of individual oncogenic alterations on lesion-specific responses. Biopsy of a patient's progressing liver metastasis following prolonged response to cetuximab revealed a MEK1(K57T) mutation as a novel mechanism of acquired resistance. This lesion regressed upon treatment with panitumumab and the MEK inhibitor trametinib. In circulating tumor DNA (ctDNA), mutant MEK1 levels declined with treatment, but a previously unrecognized KRAS(Q61H) mutation was also identified that increased despite therapy. This same KRAS mutation was later found in a separate nonresponding metastasis. In summary, parallel analyses of tumor biopsies and serial ctDNA monitoring show that lesion-specific radiographic responses to subsequent targeted therapies can be driven by distinct resistance mechanisms arising within separate tumor lesions in the same patient. SIGNIFICANCE: Molecular heterogeneity ensuing from acquired resistance drives lesion-specific responses to subsequent targeted therapies. Analysis of a single-lesion biopsy is inadequate to guide selection of subsequent targeted therapies. ctDNA profiles allow the detection of concomitant resistance mechanisms residing in separate metastases and assessment of the effect of therapies designed to overcome resistance.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/tratamento farmacológico , MAP Quinase Quinase 1/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Cetuximab/uso terapêutico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA de Neoplasias/sangue , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Terapia de Alvo Molecular , Panitumumabe , Medicina de Precisão , Resultado do Tratamento
8.
Cancer Discov ; 5(12): 1271-81, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26432108

RESUMO

UNLABELLED: MET inhibition is effective in some patients with MET-amplified esophagogastric cancer (EGC), but understanding acquired and de novo resistance mechanisms will be critical to improving therapy. We identified KRAS mutation as a novel cause of acquired resistance in a patient after a 2-year response to a MET inhibitor. We also observed that 40% to 50% of patients with MET-amplified EGC harbor coamplification of HER2 and/or EGFR concurrently in the same tumor cells, which can drive de novo resistance. One patient with concurrent MET and HER2 amplification was refractory to HER2 blockade, but responded to combined MET/HER2 inhibition. We also found striking heterogeneity in MET amplification between distinct metastatic lesions and primary tumors in individual patients with EGC. In these patients, MET inhibition led to mixed responses and disease progression through outgrowth of non-MET-amplified clones, which could be monitored in circulating tumor DNA. Thus, receptor coamplification and molecular heterogeneity may be key drivers of clinical resistance in MET-amplified EGC. SIGNIFICANCE: Coamplification of driver oncogenes occurs frequently in EGC and can drive therapeutic resistance, supporting a role for comprehensive molecular analysis prior to targeted therapy. EGCs can also exhibit extensive heterogeneity in gene amplification between distinct tumor lesions within the same patient, suggesting that molecular profiling of a single-lesion biopsy may be insufficient to guide targeted therapy selection.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Esofágicas/genética , Amplificação de Genes , Heterogeneidade Genética , Proteínas Proto-Oncogênicas c-met/genética , Neoplasias Gástricas/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/tratamento farmacológico , Humanos , Hibridização in Situ Fluorescente , Terapia de Alvo Molecular , Mutação , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/tratamento farmacológico , Tomografia Computadorizada por Raios X , Resultado do Tratamento
9.
PLoS One ; 10(4): e0123816, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25885474

RESUMO

Hepatocellular carcinoma is a highly deadly malignancy, accounting for approximately 800,000 deaths worldwide every year. Mutation of the p53 tumor suppressor gene is a common genetic change in HCC, present in 30% of cases. p53R175H (corresponding to p53R172H in mice) is a hotspot for mutation that demonstrates "prometastatic" gain-of-function in other cancer models. Since the frequency of p53 mutation increases with tumor grade in HCC, we hypothesized that p53R172H is a gain-of-function mutation in HCC that contributes to a decrease in tumor-free survival and an increase in metastasis. In an HCC mouse model, we found that p53R172H/flox mice do not have decreased survival, increased tumor incidence, or increased metastasis, relative to p53flox/flox littermates. Analysis of cell lines derived from both genotypes indicated that there are no differences in anchorage-independent growth and cell migration. However, shRNA-mediated knockdown of mutant p53 in p53R172H-expressing HCC cell lines resulted in decreased cell migration and anchorage-independent growth. Thus, although p53 mutant-expressing cells and tumors do not have enhanced properties relative to their p53 null counterparts, p53R172H-expressing HCC cells depend on this mutant for their transformation. p53 mutants have been previously shown to bind and inhibit the p53 family proteins p63 and p73. Interestingly, we find that the levels of p63 and p73 target genes are similar in p53 mutant and p53 null HCC cells. These data suggest that pathways regulated by these p53 family members are similarly impacted by p53R172H in mutant expressing cells, and by alternate mechanisms in p53 null cells, resulting in equivalent phenotypes. Consistent with this, we find that p53 null HCC cell lines display lower levels of the TA isoforms of p63 and p73 and higher levels of ΔNp63. Taken together these data point to the importance of p63 and p73 in constraining HCC progression.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteína Supressora de Tumor p53/genética , Animais , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Progressão da Doença , Predisposição Genética para Doença , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Transgênicos , Ativação Transcricional
10.
Cancer Discov ; 5(4): 358-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673644

RESUMO

UNLABELLED: BRAF mutations occur in approximately 10% of colorectal cancers. Although RAF inhibitor monotherapy is highly effective in BRAF-mutant melanoma, response rates in BRAF-mutant colorectal cancer are poor. Recent clinical trials of combined RAF/EGFR or RAF/MEK inhibition have produced improved efficacy, but patients ultimately develop resistance. To identify molecular alterations driving clinical acquired resistance, we performed whole-exome sequencing on paired pretreatment and postprogression tumor biopsies from patients with BRAF-mutant colorectal cancer treated with RAF inhibitor combinations. We identified alterations in MAPK pathway genes in resistant tumors not present in matched pretreatment tumors, including KRAS amplification, BRAF amplification, and a MEK1 mutation. These alterations conferred resistance to RAF/EGFR or RAF/MEK combinations through sustained MAPK pathway activity, but an ERK inhibitor could suppress MAPK activity and overcome resistance. Identification of MAPK pathway reactivating alterations upon clinical acquired resistance underscores the MAPK pathway as a critical target in BRAF-mutant colorectal cancer and suggests therapeutic options to overcome resistance. SIGNIFICANCE: RAF inhibitor combinations represent promising approaches in clinical development for BRAF-mutant colorectal cancer. Initial characterization of clinical acquired resistance mechanisms to these regimens identified several MAPK pathway alterations driving resistance by reactivating MAPK signaling, highlighting the critical dependence of BRAF-mutant colorectal cancers on MAPK signaling and offering potential strategies to overcome resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Amplificação de Genes , Humanos , MAP Quinase Quinase 1/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteína Oncogênica p21(ras)/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Ativação Transcricional
11.
Cold Spring Harb Protoc ; 2014(11): 1167-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25368308

RESUMO

Injection of RCAS viruses is highly customizable to the desired target tissue. RCAS viruses can be delivered into mice in vivo by injection of virus-producing cells or by injection of concentrated virus. When cells are injected, they persist for several days, continuously producing virus. Typically the decision of whether to inject virus-producing cells or concentrated virus is determined by the volume that can be reliably injected into a given tissue and the age of the animal when the virus delivery is performed. This general protocol describes the intraperitoneal injection of RCAS-expressing cells into mice and discusses the circumstances in which the injection of concentrated virus is preferred.


Assuntos
Vírus do Sarcoma Aviário/crescimento & desenvolvimento , Vírus do Sarcoma Aviário/genética , Transplante de Células/métodos , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Animais , Injeções Intraperitoneais , Camundongos
12.
Cold Spring Harb Protoc ; 2014(11): 1161-6, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25368307

RESUMO

RCAS viruses are replication-competent in avian cells, but are replication-deficient in mammalian cells. Therefore, high-titer RCAS virus stocks can be generated only in avian cells. The chicken fibroblast cell line DF1 is well suited for this purpose. Successful infection of target mammalian cells, particularly in vivo, is dependent on the production of high titer viruses by DF1 cells. Moreover, consistency in viral titer helps to ensure uniformity in results produced following the use of independent lots of virus producer cells. Therefore, it is critical to determine the viral titer before initiating these experiments. Because several factors, including insert size and the effect of the inserted gene product on the viability of DF1 cells, influence viral titer, the production of high virus titers cannot be assumed. For RCASBP-A-based viruses, a titer of >1 × 10(7) IU/mL is considered appropriate. Importantly, the virus reverse transcriptase is error prone; errors will accumulate in the virus produced over time. Therefore, virus producer cells should not be cultured for >4-6 wk before being replaced with fresh producer cells. Low passage virus producer cells may be frozen and stored at -80°C; thawed cells will not display a reduction in virus titer. Virus can be collected regularly, concentrated, and stored at -80°C for long-term use; thawed viral stocks typically show a 10-fold decrease in titer.


Assuntos
Vírus do Sarcoma Aviário/crescimento & desenvolvimento , Vírus do Sarcoma Aviário/isolamento & purificação , Fibroblastos/virologia , Vetores Genéticos/isolamento & purificação , Animais , Linhagem Celular , Galinhas , Temperatura , Cultura de Vírus
13.
Cold Spring Harb Protoc ; 2014(11): 1128-35, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25368315

RESUMO

For successful infection, avian sarcoma leukosis virus subgroup A (ASLV-A) requires its receptor, tumor virus A (TVA), to be present on the surface of target cells. This is the basis of the RCAS-TVA gene delivery system: Mammalian cells lack the gene encoding TVA and are normally resistant to infection by ASLV; however, transgenic targeting of TVA to specific cell types or tissues in the mouse renders these cells uniquely susceptible to infection by ASLV-A-based RCAS viruses. The RCAS-TVA system is a powerful tool for effectively modeling human tumors, including pancreatic, ovarian, and breast cancers, gliomas, and melanomas. RCAS viruses can deliver cDNAs (≤2.8 kb), as well as short hairpin RNAs (shRNAs), microRNAs (miRNAs), and other noncoding RNAs. Compared with traditional transgenic and knockout mice, the RCAS-TVA system has several strengths. First, virus delivery is generally performed postnatally and results in a relatively low infection rate of target cells; the sporadic postnatal expression of the gene of interest mimics the situation in developing human tumors. Second, a single transgenic mouse line can be used to compare the consequences of specific genes on tumor development, with viruses encoding oncogenes or shRNAs targeting specific tumor suppressor genes. TVA mouse strains can also be easily combined with transgenic, knock-in, and knockout mouse models to study cooperating genetic events.


Assuntos
Vírus do Sarcoma Aviário/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Vetores Genéticos , Neoplasias/patologia , Vírus Oncogênicos/genética , Receptores Virais/metabolismo , Animais , Humanos , Camundongos , Vírus Oncogênicos/metabolismo , Receptores Virais/genética
14.
Mol Biol Cell ; 24(19): 3085-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23904271

RESUMO

The X-linked gene Rnf12 encodes the ubiquitin ligase really interesting new gene (RING) finger LIM domain-interacting protein (RLIM)/RING finger protein 12 (Rnf12), which serves as a major sex-specific epigenetic regulator of female mouse nurturing tissues. Early during embryogenesis, RLIM/Rnf12 expressed from the maternal allele is crucial for the development of extraembryonic trophoblast cells. In contrast, in mammary glands of pregnant and lactating adult females RLIM/Rnf12 expressed from the paternal allele functions as a critical survival factor for milk-producing alveolar cells. Although RLIM/Rnf12 is detected mostly in the nucleus, little is known about how and in which cellular compartment(s) RLIM/Rnf12 mediates its biological functions. Here we demonstrate that RLIM/Rnf12 protein shuttles between nucleus and cytoplasm and this is regulated by phosphorylation of serine S214 located within its nuclear localization sequence. We show that shuttling is important for RLIM to exert its biological functions, as alveolar cell survival activity is inhibited in cells expressing shuttling-deficient nuclear or cytoplasmic RLIM/Rnf12. Thus regulated nucleocytoplasmic shuttling of RLIM/Rnf12 coordinates cellular compartments during mammary alveolar cell survival.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Sobrevivência Celular/genética , Glândulas Mamárias Animais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Núcleo Celular/genética , Desenvolvimento Embrionário , Epigênese Genética/genética , Feminino , Células HeLa , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Fosforilação , Gravidez , Processos de Determinação Sexual , Ubiquitina-Proteína Ligases/genética
15.
Mol Cancer Res ; 10(9): 1228-39, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22871572

RESUMO

Mutation of KRAS is a common initiating event in pancreatic ductal adenocarcinoma (PDAC). Yet, the specific roles of KRAS-stimulated signaling pathways in the transformation of pancreatic ductal epithelial cells (PDEC), putative cells of origin for PDAC, remain unclear. Here, we show that KRAS(G12D) and BRAF(V600E) enhance PDEC proliferation and increase survival after exposure to apoptotic stimuli in a manner dependent on MEK/ERK and PI3K/AKT signaling. Interestingly, we find that activation of PI3K/AKT signaling occurs downstream of MAP-ERK kinase (MEK), and is dependent on the autocrine activation of the insulin-like growth factor (IGF) receptor (IGF1R) by IGF2. Importantly, IGF1R inhibition impairs KRAS(G12D)- and BRAF(V600E)-induced survival, whereas ectopic IGF2 expression rescues KRAS(G12D)- and BRAF(V600E)-mediated survival downstream of MEK inhibition. Moreover, we show that KRAS(G12D)- and BRAF(V600E)-induced tumor formation in an orthotopic model requires IGF1R. Interestingly, we show that while individual inhibition of MEK or IGF1R does not sensitize PDAC cells to apoptosis, their concomitant inhibition reduces survival. Our findings identify a novel mechanism of PI3K/AKT activation downstream of activated KRAS, illustrate the importance of MEK/ERK, PI3K/AKT, and IGF1R signaling in pancreatic tumor initiation, and suggest potential therapeutic strategies for this malignancy.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Carcinogênese , Carcinoma Ductal Pancreático/genética , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Camundongos Transgênicos , Mutação de Sentido Incorreto , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes de Fusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...